北斗授时系统传递的是国家授时中心发播的标准时间信号,也就是目前国际通用的标准时间——协调世界时(Universal Time Coordinated,UTC)。
北斗授时的精度可以达到10纳秒的量级,要实现如此高精度的时间测量,只有原子钟能做到。原子钟是目前世界上最精密的计时装置,精密到几百万年才差1秒!而我们平时用的钟表,精度高的每天也会有0.1秒左右的误差。在卫星导航系统中,如果时间测量有1秒误差,就意味着定位会偏离30万公里!
北斗导航卫星上配有星载原子钟,以确保北斗授时系统有精确的时间源。导航卫星将携带了精确标准时间信息及卫星位置信息的信号发播出去,接收机通过解算自己和卫星的钟差,就可以修正本地时间,完成授时。
对于动态移动中的用户,在完成授时的同时需要获得其位置信息。我们知道,距离等于速度乘以时间。无线电传播速度(光速c)已知,通过测量无线信号从卫星发射到用户的时间,就可以得到卫星与用户之间的距离。
假设在由北斗卫星搭建的星地坐标系中,用户的位置坐标是(x,y,z),加上信号接收时间T,总共有4个未知数。因此只要集齐4颗北斗卫星,就能精确解算出用户接收机接收信号时在该星地坐标系中的位置和标准时间啦~
如果接收机的位置固定且已知,则只需要一颗卫星就能完成精准授时。卫星数量越多,时间测量越精密,位置计算也就越精确。而我们头顶上,一般至少有8颗以上的北斗卫星在运行着。
以上就是北斗授时系统的单向授时原理,即:用户接收到北斗的广播信号后,自主修正本地时间与标准时间的时间差,实现时间同步。GPS等导航卫星也是采用这种授时方式。
北斗授时系统还特有双向授时模式。双向授时模式下,用户需要与地面中心站交互信息,所有的信息处理都在中心站完成。用户向中心站发起授时申请,中心站再将时标信号通过卫星转发给用户。用户将接收到的时标信号原路返回,由地面中心站计算出信号单向传播时延,再把时延信息发送给用户。双向授时可以更精确地反映时延信息,授时精度更高。
为什么要用北斗授时?
我们每天无数次地拿起手机查看时间,在现代社会,没有什么比时间更重要了。
但是,我们要这么高的授时精度有啥用呢?再说,不是有GPS了吗,为啥还要北斗?
我们日常生活确实不需要这么精密的时间,但时间作为国际单位制中7个基本量之一,渗透于社会发展的各个领域。在航天、电力、金融交易、战场调度、公共交通以及移动通信活动中,高精度授时都非常重要。
在移动通信网络中,如果基站的时间不同步,指令匹配就会出错,通信网络就无法正常运行。
在电网系统中,如果没有精准统一的时间基准,各种自动化进程运行不同步,就可能发生电网事故,严重时将导致电网瘫痪。
在金融系统中,如果时间不同步,交易记录就会混乱,黑客就可以利用时间差盗窃资金。
因此,高精度授时技术带给我们的,不仅仅是效率和便利,更重要的是安全!
在北斗之前,我们完全依赖于GPS和GLONASS系统进行高精度授时。有了北斗授时系统,意味着中国人把时间掌握在自己手里。
最后说一句:
北斗卫星授时技术已深入应用在生产生活的各个方面,随着5G时代的到来,各式创新应用对时间和位置感知有了更高的要求,高精度授时必将有更多的用武之地。北斗+5G,会碰撞出什么样的火花?让我们拭目以待。
|